- Регистрация
- 22.04.18
- Сообщения
- 27.616
- Реакции
- 1.944
Автор: OTUS
Название: Pазработчик BigData. Модуль 3 из 5
О курсе
В настоящее время каждый сервис или устройство генерируют огромное количество данных. С помощью методов машинного обучения из данных стало возможным извлекать полезные знания. По этой причине данные становятся самым ценным ресурсом в бизнесе, а умение извлекать из данных информацию - одним из самых востребованных умений. Для того, чтобы внедрять использование данных в бизнесе, необходимо обладать набором специальных знаний и навыков. Цель курса - освоить основные темы и инструменты, позволяющие находить полезную информацию в данных и внедрять ее использование в боевое окружение. В нашем курсе мы научим основам анализа данных: расскажем о предобработке данных, типичных задачах и основных алгоритмах машинного обучения, а также научимся обрабатывать объемы данных, для обработки которых недостаточно одной машины. Все задачи будут проработаны на практике как на учебных, так и на реальных данных. Также будут рассмотрены типичные задачи, встречающиеся в разных видах компаний. В результате прохождения курса слушатель сможет самостоятельно реализовывать весь процесс от поиска знаний в данных до построения процесса по обработке данных в боевом окружении, будет обладать знаниями, необходимыми для изучения более сложных методов машинного обучения.
Программа курса:
Чаще всего в окружении, в котором приходится работать, данные не готовы для анализа, у них произвольный формат и много ошибок. Например, это данные из баз знаний, открытых API, данные из различных информационных систем партнеров.В третьем модуле рассматриваются вопросы сбора и очистки данных, разбираются типичные задачи бизнеса. Например, это предсказание ctr, ltv. Дополнительно рассмотрим специальные алгоритмы анализа данных - это работа с временными рядами, рекомендательными системами, текстами, графами.
Занятие 19: Рекомендательные системы
Типы рекомендательных систем. Векторное пространство (тот же TF-IDF) и content-based модели, повторение стандартных метрик корреляций: Пирсон, косинусная мера, Джаккарт. Offline метрики и метрики ранжирования. Построение простой content-based модели. Item(user)-based CF. Использование CF для implicit feedback. Построение CF модели (item-based или MF)
ДЗ
Применение алгоритма рекомендаций для датасета фильмов.
Занятие 20: Временные ряды
Что такое временные ряды и простые модели построения прогнозов. Разложение временного ряда на компоненты: тренд, сезонность, цикл, ошибка. Стационарность ряда. Модели класса AR, MA, ARMA, ARIMA. Построение прогноза на примере данных. Модели ARIFMA. Нелинейные модели, библиотека Prophet от Facebook. Векторные модели
Занятие 21: Latent Dirichlet Allocation
ДЗ
Применение LDA для категоризации текстов.
Занятие 22: Алгоритмы на графах
Социальные сети
Занятие 23: Нейронные сети, обучение нейронных сетей
Основы: перцептрон и синапсы, функция активации, примеры задач. Обучение: функция потерь, обратное распространение ошибки, стохастический градиент.
ДЗ
Реализация алгоритма обратного распространения ошибки и применение простой сети на mnist.
Занятие 24: Сверточный слои, каскады, визуализация признаков
Сверточный слои, каскады, визуализация признаков. Нормализация и регуляризация: batchnorm, dropout. Архитектуры нейросетей: обзор архитектур AlexNet, ResNet, GoogLenet.
Предыдущие части:
Материал может быть удален по просьбе
Скачать:
Название: Pазработчик BigData. Модуль 3 из 5
О курсе
В настоящее время каждый сервис или устройство генерируют огромное количество данных. С помощью методов машинного обучения из данных стало возможным извлекать полезные знания. По этой причине данные становятся самым ценным ресурсом в бизнесе, а умение извлекать из данных информацию - одним из самых востребованных умений. Для того, чтобы внедрять использование данных в бизнесе, необходимо обладать набором специальных знаний и навыков. Цель курса - освоить основные темы и инструменты, позволяющие находить полезную информацию в данных и внедрять ее использование в боевое окружение. В нашем курсе мы научим основам анализа данных: расскажем о предобработке данных, типичных задачах и основных алгоритмах машинного обучения, а также научимся обрабатывать объемы данных, для обработки которых недостаточно одной машины. Все задачи будут проработаны на практике как на учебных, так и на реальных данных. Также будут рассмотрены типичные задачи, встречающиеся в разных видах компаний. В результате прохождения курса слушатель сможет самостоятельно реализовывать весь процесс от поиска знаний в данных до построения процесса по обработке данных в боевом окружении, будет обладать знаниями, необходимыми для изучения более сложных методов машинного обучения.

Программа курса:
Чаще всего в окружении, в котором приходится работать, данные не готовы для анализа, у них произвольный формат и много ошибок. Например, это данные из баз знаний, открытых API, данные из различных информационных систем партнеров.В третьем модуле рассматриваются вопросы сбора и очистки данных, разбираются типичные задачи бизнеса. Например, это предсказание ctr, ltv. Дополнительно рассмотрим специальные алгоритмы анализа данных - это работа с временными рядами, рекомендательными системами, текстами, графами.
Занятие 19: Рекомендательные системы
Типы рекомендательных систем. Векторное пространство (тот же TF-IDF) и content-based модели, повторение стандартных метрик корреляций: Пирсон, косинусная мера, Джаккарт. Offline метрики и метрики ранжирования. Построение простой content-based модели. Item(user)-based CF. Использование CF для implicit feedback. Построение CF модели (item-based или MF)
ДЗ
Применение алгоритма рекомендаций для датасета фильмов.
Занятие 20: Временные ряды
Что такое временные ряды и простые модели построения прогнозов. Разложение временного ряда на компоненты: тренд, сезонность, цикл, ошибка. Стационарность ряда. Модели класса AR, MA, ARMA, ARIMA. Построение прогноза на примере данных. Модели ARIFMA. Нелинейные модели, библиотека Prophet от Facebook. Векторные модели
Занятие 21: Latent Dirichlet Allocation
ДЗ
Применение LDA для категоризации текстов.
Занятие 22: Алгоритмы на графах
Социальные сети
Занятие 23: Нейронные сети, обучение нейронных сетей
Основы: перцептрон и синапсы, функция активации, примеры задач. Обучение: функция потерь, обратное распространение ошибки, стохастический градиент.
ДЗ
Реализация алгоритма обратного распространения ошибки и применение простой сети на mnist.
Занятие 24: Сверточный слои, каскады, визуализация признаков
Сверточный слои, каскады, визуализация признаков. Нормализация и регуляризация: batchnorm, dropout. Архитектуры нейросетей: обзор архитектур AlexNet, ResNet, GoogLenet.
Предыдущие части:
Для просмотра ссылок необходимо выполнить Вход или Регистрация
Для просмотра ссылок необходимо выполнить Вход или Регистрация
Материал может быть удален по просьбе
Для просмотра ссылок необходимо выполнить Вход или Регистрация
Скачать:
Последнее редактирование: